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A B S T R A C T  

The main result is that in every complete locally-bounded linear topological 
space there exist series which are unconditionally yet not absolutely convergent. 
Relations between absolute, unconditional and metric convergence of 
series are studied. 

1. Introduction. The primary purpose of this paper is to study the connection 
between absolute and unconditional convergence of series in general linear 
topological spaces (over the real or complex field). Since our auxiliary considera- 
tions involve metric spaces we study also the connections with metric convergence. 
There being no universal agreement about the terminology we explain the above 

terms at the outset. 
A series 

(1.1) 
cO 

x, 
n = l  

in a linear topological space is said to be absolutely convergent (A) if 

oo 

(1.2) ~, Mv(x,) < eo 
n = l  

for every neighborhood V of the origin, where Mv(x ) is the Miukowski functional 
of x relative to V, i.e. 

(1.3) My(x) = inf{2 : 2 > 0, x s 2V}. 

A series (1.1) in a linear topological space is said to be unconditionallly, or 
commutatively, convergent (U)if every series obtained from (1.1) by rearrange- 

ment is convergent. 

In complete spaces this is equivalent to the requirement that (1.1) is sub-series 
convergent, i.e. that ~v% 1 x,~ be convergent for every strictly increasing sequence 

of  positive integers nv. 
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In complete locally convex spaces A =~ U. Both these notions are topological 
and the properties of absolute and unconditional convergence are preserved under 
isomorphisms. 

The third kind of convergence we consider is of a different nature. 
A series (1.1) in a linear metric space is said to be metrically convergent (M) if 

oo 

(1.4) ~ d(x,,O) < oo, 
n = l  

where d(x, y) denotes the distance between x and y.  
This is very far from being a topological notion. Even one dimensional space 

can be metrized in such a way that M does not imply even ordinary convergence; 
or also so that A does not imply M. Nevertheless it will prove very useful for 
studying the relations between the topological notions A and U. 

I f  the metric in the space is translation invariant we write II x II = d(x,O) and 
(1.4) becomes 

oo 

(1.5) z Ilxoll < oo  
n = l  

(In general this 'norm' is not linear homogeneous. II ~x 11 is continuous in both 
variables but need not even be monotone in 2 for 2 > 0.) 

In Banach spaces (1.5)is equivalent to the absolute convergence of (1.1). In 
arbitrary complete metric spaces with a translation invariant metric (F* spaces) 
we still have M =~ A, but the converse need not be true. 

It is well known that A ¢:, U in finite dimensional spaces. C.A. Rogers and the 
author proved [4] that this is not the case in any infinite dimensional Banach space, 
i.e. in every such space there exist series which are U but not A. This is equivalent 
to saying that in every infinite dimensional Banach space there exist series which 
are U but not M. This last statement was generalized from Banach spaces to 
arbitrary F* spaces by S. Rolewicz(~) [8]. Since A need not imply M in these 
spaces it does not entail the existence of series which are U but not A, and indeed 
in the space of all sequences x = (~1 . . . .  , ~,,...) with the topology of coordinate 
convergence(2) A~* U (see e.g. ['1] p. 63). 

Our main result is that in every infinite-dimensional locally-bounded(a) complete 

(1) Employing an older terminology S. Rolewicz calls M absolute convergence. The author 
in [3] also uses the older terminology. The present paper was announced in [3] as forthcoming 
under a different title (On series in Fr~ahet spaces.) 

(2) This space can be metrized by 

cO 

Ilxll = Z 2-"1 .1(1 
n = l  

(3) This means that there exists a neighborhood of the origin which is contained in a suffi- 
ciently large homothetic image of any other given neighborhood of the origin. 
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linear topological space U does not imply A. This seems a rather surprising 
generalization of the result about Banach spaces. In the opposite direction we show 
that every linear metrizable topological space containing arbitrarily shortrays(4) 
has an infinite dimensional subspace in which U and A are equivalent (we 
construct a subspace isomorphic to the one given in footnote(2)). It is remarkable 
that local convexity does not enter into these statements. 

2. Statement of results. We begin with results about metric convergence. For 
a linear metric space we put  

(2.1) A(X) = sup d(x, 0). 
x , X  

THEOREM 1. I f  X is a complete linear metric space containing arbitrarily 
short rays and (7,,) is a sequence of positive numbers satisfying 

(2.2) 

and 

(2.3) 

0 < ~, < A(X) (n - 1, 2,. . .)  

lim ~, = 0 
n----O0 

then there exists in X an unconditionally convergent series (1.1) with 

(2.4) d,,(x,0) = ?, (n = 1,2, ...). 

In order to state concisely the next results we introduce the following definitions. 
Let X be a linear metric space and p > 0. We put 

(2.5) B*(p)=(x:d(l~x,O)<=p for 0_<_/~ 1}. 

B*(p) is a closed star-shaped neighborhood of  the origin. The sets B*(p) obviously 
constitute a fundamental system of neighborhoods of  the origin. 

Let if(2) be any positive function defined for 0 < 2 < 1. We say that X has 
property C*(~b) if 

(2.6) B*(2p) ~ qS(2)B*(p) for all p > 0 and 0 < 2 < 1. 

The following may be considered the key result of the paper. 

THEOREM 2. Let X be an infinite-dimensional complete linear metric space 
having the property C*(dp) and let ~,(n = 1,2, ...) be a sequence satisfying (2.2) 
and 

oO 

(2.7) ]~ ~2(a~,) < oo for every 0 < o- < m.  
n = l  

(4) This means that to every neighborhood of the origin there corresponds some x ~ 0 for 
which the whole ray 2x, (2 > 0), is contained in it. 
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Then there exists in X an unconditionally convergent series (1.1) for which (2.4) 
holds. 

An immediate consequence is the following 

COROLLARY 1. Let X be an infinite dimensional complete linear metric space 
with a translation invariant metric and let yn(n = 1, 2 .... ) be a sequence satisfying 
(2.2) and 

(2.8) ~ ~ < m.  

Then there exists in X an unconditionally convergent series (1.1) with 

(2.9) II x. I] = Y., (n = 1,2 . . . .  ). 

Indeed, this result follows at once from the observation that if the metric is 
translation invariant then X has the property C*(q~) with ~b(2) = 22. This is seen 
as follows: If  x~B*(2p) with 0 < 2 < 1, then for every 0 < # <  1 we have(5) 

[l]j . --<[11 = 2- [1N  ap = p, 

!.e. (x/2,l) e B*(p) as asserted. 
For Banach spaces this corollary is precisely the main result of [4]. It is again 

noteworthy that local convexity is not needed. Taking e.g. y, = 1 / n (for n > 1/A(X)) 
we obtain the result of S. Rolewicz quoted in the introduction. 

As another consequence of Theorem 2 we deduce our principal result of a 
topological nature. 

Tm~OREM 3. In every infinite-dimensional locally-bounded complete linear space 
there exist unconditionally convergent series which are not absolutely convergent. 

In the converse direction we prove 

Trmo~M 4. Every metrizable complete linear space containing arbitrarily 
short rays has infinitely dimensional subspace in which every unconditionally 
convergent series is absolutely convergent. 

We conclude with a result showing how little connection there is between M 
and A even in F* spaces. 

THEOREM 5. Let X be a metrizable linear topological space and y,(n = 1,2,...) 
any sequence of posit&e numbers satisfying (2.3). Then there exists a translation 
invariant metrization of X (reproducing, of course, the given topology) such that 
(1.1) is absolutely convergent whenever 

(5) Square brackets denote the integral part. 
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(2.10) II x,  II <= 3',, (n = 1, 2 . . . .  ). 

3. Proof of Theorem 1. Given e > 0 there exists fl > 0 such that d(x,O) < fl 
and d(y, 0) < fl together imply d(x + y, 0) < ct. Thus starting with any % > 0 we 
can define consecutively a sequence of positive numbers el, e2 . . . .  , c~ v ... .  satisfying 

(3.1) d(x + y,O) < ~ - 1  whenever d(x,O) <= ct, and d(y,O) __< c~, (v = 1,2,...). 

We may moreover assume 

(3.2) lim 7~ = 0. 
v ~ O 0  

(This is automatic if % < A(X), then ~v < 2-V~o). 
Put 

(3.3) A(x) = sup d(2x, O). 
. I > 0  

Since X contains arbitrarily short rays there exist non zero yv in X satisfying 

(3.4) A(y~)<e~ (v=  1,2 . . . .  ). 

Finally we determine a strictly increasing sequence of positive integers k, such 
tha t  

(3.5) 7 , < A ( y  0 for n > k ~  ( v = l , 2  .. . .  ). 

We now define x n satisfying (2.4) as follows: Arbitrarily for 1 __< n < k 1 and 
as a positive multiple of Yv for k~ <__ n < k~+ 1 (v = 1,2, ...). This can be clone 
because d(2 x, 0) is continuous in 2. 

We claim that the series thus obtained is unconditionally convergent. Indeed, 
denoting by a prime summation over any assigned subseries we have for m __> ki 

m m j - 1  k v + l - 1  ~ t  

(3.6) ]E' x. = ]E ]E' x. + x. 
n =k i v =~ n =k  v n =k j  

where j is determined by kj < m < kj + 1. By our construction, (3.3)and (3.4), we 
have 

(3.7) d x, ,0 _-< A(y~) <c¢~, d x, ,0 _<-A(y/)<~j. 
n = k v  l l = k j  

Applying (3.1) from the last summand of (3.6) backwards we obtain 

d ~ ~ - l .  
/ I - -  

As this holds for any m => k s it follows, by (3.2), that ]E'x, is Cauchy convergent; 
hence, by completeness, convergent. This being true for any subseries, the theorem 
is established. 
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4. A geometrical lemma. 
LEMMA 1. Let B be a compact set in Euclidean m-space containing the 

origin as an interior point. Let 1[ [I denote the Euclidean norm, relative to a 

given orthonormal set et . . . .  ,e,,. There exists a centro-affine transformation T 

having the properties 

(4.1) {x : Ilx Ii < 1} = TB 

and there are points Pl . . . . .  p., on the boundary of TB such that 

J 
pi = ]g rtj,~ e~ ( j  = 1 , . . . ,m)  

t = 1  
(4.2) 

with 

(4.3) 
j - - 1  2 2 

rtj,~ = 1 - nj,j =< j - 1 
i = l  m 

Specialized to convex symmetrical B this is precisely the fundamental lemma 
of [4]. The proof, however, does not appeal at all to the symmetry or convexity 
of B and holds verbatim for any compact B containing the origin as an interior 
point (it is even possible to relax somewhat the requirement of compactness). 
Since the proof is reproduced in Day's book [1] (p. 61) we shall not repeat it here. 

For  any real 21 ... .  ,2 k (1 < k < m) we have 

(4.4) 

By (4.2) and (4.3) 

(4.5) 

k k k 

E 2~pj = Y. 2Fcj,~e ~ + Y_. ;q(p~ - z j , j e i ) .  
j = l  j = l  j = l  

~lk ( )1/2 
]IjX=I !i --< i=~ ~ 2~ 

and 

(4.6) iIjZ__xAj(p~- n~,~ej) < Z 12 1 _-< • 22 j - 1 ] 
j = l  \ j = l  \ j = l  m / " 

Combining (4.4), (4.5) and (4.6) we obtain(6) 

(4.7) ~= 2jp i < 1 +  / ~ 22} " 
j I = 2 m  \ j = l  / 

Taking this into account we may reformulate the above lemma as follows: 

(6) A similar computation leading to a somewhat weaker estimate occurs in [4] (and [1]). 
The improvement is of no consequence for the present paper and is brought for future reference. 
An occasionally better estimate is given by A. Grothendieck [5] but there is a mistake in his 
derivation (since the exact nature of the estimate is of no importance in [5] none of its results 
are affected). 
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LEMMA 2. Let B be a compact set containing the origin as an interior point 

in real m-dimensional space. Then a Euclidean norm II II may  be introduced 

into the space so that 

(4.8) {x: II x 11 -<- 1} c B 

and there exist points Pl . . . . .  p,, of  unit norm on the boundary of B for  which 

(4.7) holds for  all real 21 .. . . .  2k (1 < k < m). 

5. Proof of Theorem 2. In view of Theorem 1 we may assume that X does not 
contain arbitrarily short rays. Then, cf. (3.3), 

(5.1) 6 = inf A(x) > 0 
~ X  

and we may start with Xo < b and construct a sequence of positive numbers 

~i, e2 . . . . .  e . . . . .  satisfying (3.1). 
Let 0 < p~ < el and let kl be such that 

oo 1 
Z ~2(~./pI) < -. 

. = k ,  4 

Having defined p, and kv (v = 1,2, ..,) we choose Pv+l and then k,+~ > k~ so that 

(5.2) O < p ~ + l < e ~ ÷ l  and N ~z ?~ < _ ~ .  
n = k v ÷ l  

The existence of such k~ is assured by (2.7). 
We now proceed to define the x. in (1.1). For  1 < n < k 1 we choose them 

arbitrarily subject to (2.4). 

For  kv < n < k~ + 1 we proceed as follows: Put k = k, + 1 - k~ and let Y be an 
m = k 2 dimensional subspace of  X.  B = Y N B*(p,) is compact (since p~ < 6) 

and contains the origin as an interior point. Let H II be the Euclidean norm in Y 
and pj the points whose existence is asserted in Lemma 2. Then we have 

(5.3) j~12jpj < 1 + 

for all real 2, . . . . .  2k. 
The points pj may not quite do for our purpose. It may happen that though 

they are boundary points of B still/~pj ¢ B for some # > 1 (there may be protruding 

segments). However, as B is compact and star-shaped there exist qj on the 
boundary of  B, arbitrarily close to the respective pj, for which i.tqjeB for all 

p > 1. In view of  (5.3) the qj may be chosen close enough to be pj so that we have 

k / k \ 1 / 2  

(5.4) j=~12,q, < 2  tj~=12:) 

for all real :q, ..., 2k. 
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We now choose x~ for k v ____ n < kv+ 1 so that it is a positive multiple, x n = psqj 
say, of qn-kv + 1 on the boundary of B*(7,,) and that (2.4) holds. Then we have by 
(2.6) 

, t j<~b ( 7 - - p ~ v ) ( j = l  .. . .  , k , , + , - k ;  n = k ,  + j - l ) .  (5.5) 

From (5.2), (5.4) and (5.5) we obtain 

kv+t-I 

~ x,, < 1  ( v = l , 2  .. . .  ) 
n . .  

where '  denotes summation on any subset. By (4.8) and (5.2) we have then 

d ~; x~,O <p~<u~ ( v = l , 2  .. . .  ). 
n=kv 

This is exactly (3.7) and the proof is achieved in the same way as that of 
Theorem 1. 

6. Proof of Theorem 3. We start with a second corollary of Theorem 2 which 
is of independent interest. 

COROLLARY 2. Let X be a complete infinite-dimensional metric space with a 
p-homogeneous norm (0 < p < 1), i.e. satisfying 

(6.1) ~2xll = l~lPilxll for all scalars ~. 

Then, given any sequence of positive numbers 7n (n = 1, 2,...) satisfying 

(6.2) ~ 72/" < oo, 
n = l  

there exists in X an unconditionally convergent series (1.1)for which (2.9)holds. 
Indeed, (6.1) implies B*(2p) = 21/PB*(p) for 2 > 0. Thus X has property C*(qS) 

with ~b(2) = 21/p and (6.2) is equivalent to (2.7). 
On the other hand, taking V = B*(p) we have, by (1.3) and (6.1), 

M,,(x) = (ll x I I /p) ' ' .  
Therefore 

(6.3) 
o o  

II x,,lt 1,p < 
n = l  

is a necessary and sufficient condition for the absolute convergence of (1.1). 
It follows that in every complete infinite-dimensional space with a p-homo- 

geneous norm there exist series which are unconditionally yet not absolutely 
convergent (take e.g. 7, = n -p (n = 1,2 .. . .  )). 
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The theorem now follows from the fact that the topology of a locally bounded 
space can always be given by a p-homogeneous norm with a suitable 0 < p < 1. 
(S. Rolewicz [7], see e.g. I-6] p. 165). 

7. Proof of Theorem 4. It may be assumed without loss of generality 
that the topology is given by a translation invariant metric. 

Let Yl be an arbitrary non-zero point of the space, and having determined y~ 
chose Y~+I # 0 so that 

1 
(7.1) A(yi+a) < TIIY'II, (i = 1,2 . . . .  ). 

Given any sequence of numbers ~ ( i=  1, 2 . . . .  ), it follows from (7.1) that the 
series 

(7.2) ~, (~Yi 
i = 1  

is metrically, hence absolutely, convergent. Therefore, by completeness, it rep- 
resents a point in the space. 

Let Y be the totality of points representable by series (7.2). It is obviously a 
linear set and the representation (7.2) isunique.  Indeed, we claim that if (7.2) 
has the value zero then all (~ vanish. Assume (~ = 0 for i < j, (j > 1); if (g # 0 then 

1 ~ , ( , y i = y j +  ~, (, 

contradicting (7.1). Thus ~ = 0 (i = 1,2 .. . .  ). 
Moreover, Y is a closed subspace. Indeed, let 

oo 

(7.3) z, = • ~,,~Yi (n = 1,2,...) 
i = 1  

be a sequence of points of Y converging (in the original space) to z. The z, form 
then a Cauchy sequence and, as in the proof uniqueness above, it follows that 
each sequence ~1,i, (2 ~ .. . . .  ~,,,~... is a Cauchy sequence. Hence limn = co ~,,~ exists 
(i = 1,2 . . . .  ). If  we denote this limit by ~ then it follows immediately from (7.1) 
that  the sequence (7.3) tends to the point represented by (7.2). Hence z z Y and Y 
is closed, therefore also complete. 

We have in fact shown that a sequence (7.3) is convergent if and only if all the 
sequences (1,i, (2,i . . . .  ,(.,i .... 
(1.1) with 

(i = 1,2 .... ) are convergent. Therefore, a series 

cO 

(7.4) x, = Z ~,,~Yi 
i - - - 1  

is unconditionally convergent if and only if all the series 
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oo 

(7.5) ~: ~. i, (i = 1,2 . . . .  ) 
t l = l  

are unconditionally, hence absolutely, convergent. But if the series (7.5) are abso- 
lutely convergent it follows that the Minkowski functional (1.3) with 

v -- {x:  II x 11 --- II y J Ill 

satisfies 

co oo j 

Mv(x.) S ~ ~ I ~.,, I!1 Y, II < ~" 
n = l  n = l  i = l  

Since II Yi 11-~ 0 by (7.1) it follows that the unconditional convergence of (1.1) 
implies its absolute convergence and the theorem is established. 

8. Proof of Theorem 5. Since X is metrizable we can define its topology by a 
translation invariant metric d'. We now introduce another metric d, equivalent 
to d', having the required properties. 

Let g(t) be strictly increasing and continuous for 0 < t < ~ with g(0)= 0 

and such that 

oo 

(8.1) ~ ?.g(~,) < ~ .  
n = l  

Put f(t)=tg(t). Then f(t) is continuous and strictly increasing from 0 to ~ and 
we have for 0 < s, t < 

s t 
g(s + t)> max(g(s),g(t)) > - - - g ( s )  + - - - - g ( t ) ,  

= = s + t  s + t  

o r  

(8.2) f(s + t) >_f(s) + f(t) ; 

and (8.2) obviously remains valid when either s or t, or both, vanish. L e t f  -1 be 
the inverse function o f f  and define 

a(x, y) = f - l ( a ' ( x ,  y)) 

for all x, y ~ X. 
Then d(x, y) is again translation invariant and induces the same topology as 

d'(x,y). But II x.  II --< 7. implies II x. I1' _ - J ( r . ) -  ~',g(?,,). Thus, by (8.1), (2.10) 
implies the metric convergence of (1.1)--relative to II II'--and hence its absolute 

convergence. 

9. Remarks. 9.1. The requirement of completenes can be dropped throughout 
if unconditional convergence is replaced by Cauchy unconditional convergence 
(i.e. the partial sums of every rearranged series from a Cauchy sequence). 

9.2. The contraction condition C*(q~) in Theorem 2 can be weakened to the 
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following one: There exists a null-sequence of  positive numbers PN (N = 1,2 . . . .  ) 
and corresponding to each PN subspaces YN of arbitrary high finite dimension 
such that 

YN (~ B*(2PN) c YN n ~b(2)B*(pN) for N = 1,2 . . . .  and 0 < 2 < 1. 

Indeed the only modification in the proof is that the p~ in (5.2) have to be chosen 
from the given sequence and the m-dimensional Y from the corresponding sub- 
spaces. 

9.3. Further results can be deduced if one couples C*($), with conditions of the 
type B*(~p) ~ ~b(;OB*(p ). (A similar remark applies to 9.2 as well as to further 
weakenings of  C*(~b)). 

This is particularly striking when B*(Ap) = dp(2)B*(p) as in the case of  Corollary 
2. Then the gain due to the second-power of  2j in (4.7) is most evident. 

9.4. If I] I[ is the ordinary norm in nilbert space and we introduce a p- 
homogeneous norm by llxH' = Ilxll p ( O < p < l )  we see from the fact that 
xll xo < ~ is necessary for unconditional convergence of  (1.1) in Hilbert space 

that the result of  Corollary 2 is best possible. 
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